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In recent years researchers working in the field of pulsed power production and high- 
velocity projectiles have devoted a great deal of attention to the study of the potential 
possibilities of the electrodynamic method for accelerating solid bodies in rail accelerators 
with a plasma piston and a dielectric body. International conferences [i, 2] and a national 
symposium in the USA [3] were devoted to these questions. It is expected that the use of 
electromagnetic forces for accelerating macroscopic particles will make it possible to a- 
chieve velocities significantly exceeding the values achieved by other methods. The pos- 
sibility of constructing devices for accelerating particles with a mass of the order of one 
gram up to different velocities was studied and designs were discussed in a number of works: 
12 km/sec [4], 15 km/sec [5, 6], 20 km/sec [7], 25 km/sec [5, 8], etc. 

The authors of these works believe that the main advantage of acceleration of dielectric 
solid bodies with a plasma piston lies in the possibility of removing the thermal limitation, 
arising due to the electric current flowing in the circuit, on the velocity of metallic 
particles. Thus in [7] Hawke and Scudder, evaluating the maximum velocity up to which cubic 
copper particles can be accelerated in a rail accelerator (=9 km/sec), conclude that in order 
to achieve higher velocities acceleration of dielectric solids with a plasma piston must be 
employed. 

In studying the possibilities of the rail accelerator method for accelerating solids one 
of the most important problems is to determine the critical current density per unit width of 
the electrode, above which factors limiting the operation of the accelerator start to 
operate: destruction of the projectile, destruction of the accelerator channel, melting and 
vaporization of the surface of the electrodes, etc. A detailed analysis of this problem has 
not been published. Some estimates of the critical values of I0/b (I 0 is the current flowing 
in the circuit and b is the width of the electrodes) are given in [7], where the estimate 
I0/b s 81 MA/m was obtained based on the strength of the existing dielectrics fabricated 
based on rubber and graphite. The critical current density, above which copper electrodes 
melt owing to Joule heating, is estimated to be 43 MA/m with a stepped growth of the magnetic 
field. 

In this paper we shall study the critical current density at which the temperature of 
the surface of the electrodes reaches the melting temperature as a result of the heating of 
the electrodes by the current flowing in the circuit and the plasma piston accelerating the 
dielectric body. The dependences of the critical current density I0/b on the basic physical 
properties of the electrode material and the plasma and rail accelerator parameters are 
determined. 

i. A diagram of the rail accelerator with a plasma piston is shown in Fig. I; 1 is the 
source of electric power, 2 is the accelerated dielectric body, 3 is the plasma piston, 4 are 
the electrodes, ~ is the length of the plasmoid, d is the distance between the electrodes, 
and v is the velocity of the body and plasmoid. The problem is to determine the maximum 
admissible current flowing in the circuit, for which the surface of the electrodes will reach 
the melting point. In the scheme under study the temperature of the electrodes (heat energy) 
increases under the action of the internal (Joule heating) and external (plasma) heat 
sources. The most complete solution of this problem obviously can be obtained only by numer- 
ical methods. We shall make a number of assumptions in order to obtain analytical estimates. 
We shall assume that the dimensions of the plasmoid remain unchanged during the motion 
(solid-body model) and b = d, 2 = kb (k = const). The transient processes associated with 
establishing the current in the circuit and starting the body in motion are ignored. We 
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single out the point x 0 on the electrode. Assume that at time t = 0 the plasma piston ap- 
proaches the point x 0. We denote by v 0 and I 0 the velocity of the plasma and current in the 
circuit at this moment. We assume that the current in the circuit remains constant. Under 
these assumptions we shall determine the critical current density 10/b at which within the 
time of transit of the plasmoid past the point x 0 the temperature at this point reaches the 
melting point of the electrodes T m. 

It is obvious that with this formulation of the problem the values obtained for 10/b 
since the Joule heating at the point x 0 will continue after the plasma 

We shall determine the transit time of the plasma past the point x 0 from 

$0 
~ vdt = I. 
0 

Based on the adopted assumptions, neglecting friction and the counterpressure, 
of the body is given by 

(1.1) 

the velocity 

v = v o + k r I~tf2rn. ( 1 . 2 )  

Here m is the mass of the accelerated body and A~ is the inductance of the rail accelerator 
per unit length. Substituting (1.2) into (I.i) and carrying out the calculations we find 
that the transit time of the plasmoid past the point x 0 is given by 

to -~-~ ~--~o 

As A ~ O, t o -* 2 / v o ;  f o r  A >> 1,  ~ o ~ , 2 k b / ( v o l / ' A )  �9 

We shall determine the change in the temperature of the electrode T at the point x 0 from 
the solution of the one-dimensional heat-conduction equation 

pcST/8~ ---- ~.a2T/Sy 2 q- ]2/0 (1.4) 

with a fixed starting temperature distribution and with a boundary condition of the type for 
a boundary-value problem of the second kind: 

T(y; O) = O, #T(O; ~)/ay = - -F/Z,  (1.5) 

where p, c, ~, and a are the density, heat capacity, thermal conductivity, and electric con- 
ductivity of the electrode material; j is the current density; and, F is the heat flux from 
the plasma into the conductor. We assumed that p, c, and A remain constant as the plasma 
passes the point x 0. 

Using the standard procedure, the solution of the boundary-value problem (1.4) can be 
represented as a sum of solutions of two boundary-value problems: 

aTe(O; O/Sy = --F/%, 0 ~ ~ ~ to; ( 1 . 6 )  

pcaT~/a~ = f l /o,  T~(y; O) = O, ( I .  7) 

The equations (1.6) and (1.7) describe, respectively, the change in the temperature owing to 
the external heat source (effect of the plasma piston) and the internal heat source (Joule 
heating). 
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TABLE I TABLE 2 

i 
2 
4 
8 

10 

r % (r) 

0 1,3 
0,88 
0,75 
t,07 
0,81 
0,74 

n r (n) 

1 0,78 

2 0,64 

4 0,56 

lO 0,52 

2. We shall study the solution of the boundary-value problem (1.6). To determine T I it 
is necessary to know the heat flux as a function of time or length of the plasma piston as 
the plasma passes the point x 0. We shall represent the change in F in the form of a power- 

law function 

F = Fo(t/to)r/2 ( 2 . 1 )  

(r can equal --I.0 or some positive integer). The dependence F(r) makes it possible to evalu- 
ate the effect of the heat flux curves on the change in T I. An expression for the tempera- 
ture on the surface of an electrode can be obtained from the solution of Eq. (1.6) with the 
initial and boundary conditions (1.5) and (2.1) [9]: 

TI(O; t ) =  F~ I"(2+t)(t)r/2tl/2, 

w h e r e  r(W2 + t) a n d  F(r/2 + 3/2)are gamma f u n c t i o n s .  At  t = t o TI(0; to) d e p e n d s  on  r o n l y  t h r o u g h  
t h e  r a t i o  o f  t h e  i n d i c a t e d  7 f u n c t i o n s ,  a n d  i n  a d d i t i o n  t h e  c h a n g e  i n  %(r)  = F(r/2 + i)/F(r/2 + 
3/2) for a wide range of values of r is very insignificant (Table i). For this reason, in 
what follows we shall assume that 

In this case 

F = Fo = const. ( 2 . 2 )  

T , ( 0 ;  to) = Fo(4to/(~,Vc))i/~. ( 2 . 3 )  

We shall determine the value of F 0 from the energy balance in the plasmoid 

I~Rp = d%/dt + ~ FdS. ( 2 . 4 )  

H e r e  Rp a n d  ep a r e  t h e  r e s i s t a n c e  a n d  i n t e r n a l  e n e r g y  o f  t h e  p l a s m a ;  S i s  t h e  s u r f a c e  a r e a  o f  
t h e  p l a s m o i d :  S = 4b'2k-k 2b% S e t t i n g  dep/dt= O, we r e w r i t e  t h e  e x p r e s s i o n  ( 2 . 4 ) ,  t a k i n g  
i n t o  a c c o u n t  ( 2 . 2 ) ,  i n  t h e  f o r m  I~Rv=2Fob2(2k+ l), w h e n c e  

Fo ----- I~)Rp/(2b 2 (2k + t)). (2.5) 

Substituting (2.5) into (2.3), we obtain the dependence of the change in the temperature of 
the electrode surface heated by the moving plasma: 

to 
T, (0 ;  to) = I~ 2 2k Rvq- 1 ~ k ~ - p c  " ( 2 . 6 )  

3. We shall study the solution of the boundary-value problem (i.7) for two cases of 
variation of a. 

A. a = a 0 = const. Using the Maxwell's equation ] = OHz/Og we represent the change in 
the electrode temperature due to the current flowing in the circuit as 

t 

T, (g; t) = tl(%pc) ~ [O[[z/Oy] 2 dr. ( 3 . 1 )  
o 
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TABLE 3 

~, ] p, c, %, oc ~,pcT m , Io/b. Element 
W/(m'deg) ]iO -skg/m a J/(kg.deg) lO~m2/sec Tin, iO'* 3.W/m ~ iO, A/m 

Cu 399 
Hf 22 
Fe 75,4 
A1 218 
W 180 * 
Mo 15i,7 ** 
Ti 23,2 
Cr 67 

�9 At T = 0. 
�9 *At T = 100~ 

8,96 
i3,36 
7,87 
2,7 

i9,2 
10,2 
4,54 
7,19 

390 

i40 
445 
903 
t34 
253 
550 
452 

11,4 
i,t7 
2,15 
8,94 
7,0 
5,88 
0,93 
2,06 

i083 
2130 
i539 
658,7 

3395 
2622 
i668 
1890 

16,31 
1,87 
6,25 
2,29 

53,77 
26,91 

1,6i 
7,77 

t,05 
0,62 
0,84 
0,65 
i ,45 
1,22 
0,60 
0,88 

The derivative OHz/Oy must be determined from the equation of diffusion of the magnetic 
field into the conductor at the point x 0 

02HI@ 2 = zot~oOH/Ot. (3.2) 

For the initial condition we choose Hz(y; 0) = 0, and for the boundary condition we take 
the distribution of the magnetic field in the plasma up to the moment the plasmoid approaches 
the point x 0. Since it is unknown, we shall employ the boundary condition in the form of a 
power-law function 

H z = Ho(tlto)~/~, 0 <~ t <~ to, ( 3 . 3 )  

where H 0 - I0/b and n is a positive integer. By varying the index n it is possible to deter- 
mine the effect of the profile of the magnetic field in the plasma on the electrode tempera- 
ture as the plasma passes the point x 0. 

The solution of the diffusion equation (3.2) with the boundary condition (3.3) has the 
form [9] 

Hz(y; t)=Hor(n/2+l)(4t/to)n/z{~erfc~}. (3.4) 

Substituting OH z (y; t)/Oy, determined from (3.4), into (3.1) we find formulas for evaluating 
the temperature T o on the surface of the electrodes [I0]: 

( •  i [ r (n/2 + 1 
r~(o; t) = ~ ~to / ,~ t f i ~ / ~ ) ]  ' 

and at t ffi t o 

The function ~2(n)  is 

T2 (0; to) 2 [ r ( n / 2 + O  721 ---- ~toIocP2 (n)/(pcb2), 92 (n) ---- [ r  (n/2 + t/2)] I n. 

v i r t u a l l y  i n d e p e n d e n t  o f  n f o r  n f r o m  1 t o  10 ( T a b l e  2 ) .  

T2(0; to)/TI(O; to) = (1 + 2k)~2(n)~0 ]/'~-~/Rp ]/~o 

(3.5) 

The ratio 

(3.6) 

The  v a l u e s  o f  X and  XpcT~ 
u s e  a s  e l e c t r o d e s  [ 1 1 ] .  

(%=%/pc is the thermal diffusivity). The combination (2.6) and (3.5) permits determining 
the critical current density I0/b at which the surface reaches the melting point within the 
transit time of the plasma past the point x0: 

I 0 [ ( i  + 2k) z ~pcT~11/~ t ( r ,m = T2 + T:). ( 3 . 7 )  
T = _ ~ J (i + r~/r:) 1/~ 

a t  20~  a r e  g i v e n  i n  T a b l e  3 f o r  a n u m b e r  o f  m e t a l s  o f  i n t e r e s t  f o r  
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B. ~= %/(I -{- ~pcT2) (fl is a thermal coefficient). The formulas (3.5)-(3.7), obtained for 
=% = const, do not change significantly, when the electric conductivity depends on the 

heat absorbed by the electrode material on heating. 

In this case, under the boundary condition (3.3) the temperature on the surface of the 

conductor [12] T=(0; t)~'~ I--~-~011(~) n ( i -  2 pcb 2 + I/2n), which for the range of n studied agrees with 

(3.5) with good accuracy. 

Thus the expression (3.7) together with (1.3) and (3.6) permits analyzing the dependence 
of the critical current density 10/b on the physical properties of the electrode material 
(%, p, c, Tin) , the plasma parameters (Bp, %(n), k, v0) , and the parameters of the rail accelera- 
tor (%r, m, b). 

4. The dependence of T2(0; to)/T1(O; to) on t o for copper electrodes with Xcu = 11.4.10 -5 m2/sec, 
Bp = I0-3Q, and%(n) ----- 0.78 are presented in Fig. 2 for k = i0, 5, 3 and I (curves 1-4). The 
value of the resistance of the plasma R~ is taken from [13], and the value of Xcu is taken 
from [Ii] for 20~ It is obvious from the graph that for t0~ 2--5 #sec T~/T I << i and can 
be neglected in the expression (3.7). For constant values }~p, t o , k and %(g) the ratio T2/T 1 
for an arbitrary material i can be represented in the form (T2(0; to)/T1(O; to) ~ -= (T~(0; to)/T1(O; 
to))cu(XJXcu)I/2. For the metals shown in Table 3, %i < %cu and (T2(0; to)/T1(O; to))~ < (T2(0; to)/T~(O; tn))cu. 

The dependence of 10/b on t O from (3.7) for copper electrodes with Rp = 10-aQ, ~(n) = 
0.78, is shown in Fig, 3 for k = I0, 5, 3, and I (lines i-4). The values of A, p, and c at 
20~ were used [ii]. The intersection of these curves with the curve of 10/b versus 
to,= /(m,%r, b, Vo, k)permits determining from (1.3) concrete values of 10/b and to, for 
which the temperature of the electrodes at the point x 0 reaches T m within the transit time of 
the plasma past this point. The values of 10/b for acceleration of bodies with a mass of 
I0 -3 kg and b = 10 .2 m, %r = 0:25Xi0 -6. H/m are shown in Fig. 3 by the lines 5-9, correspond- 
ing to v 0 = 3, 2, I, and 0.5 km/sec. It is obvious that for copper electrodes and the 
adopted parameters of the plasma and accelerator the critical current density must not exceed 
(I-1.5) "I07 A/m. 

We shall study the analytic dependence of 10/b on the physical properties of the elec- 
trode material, and the parameters of the plasma and rail accelerator. Substituting into 
(3.7) the value of t o as A ~ 0 and for A >> i we find the following asymptotic expressions 
for T2/TI << i: 

I(O~yo/(kb))ll4 at A - +  O, I o 

b [(o~2~rb/(4mk)) 1/~ at A >> t 

For  s m a l l  v a l u e s  o f  A t he  c r i t i c a l  c u r r e n t  d e n s i t y  i s  i n d e p e n d e n t  o f  A= and m, w h i l e  f o r  
A >> 1 i t  i s  i n d e p e n d e n t  o f  v 0. S u b s t i t u t i n g  ( 1 . 3 )  i n t o  ( 3 . 7 )  and a s s u m i n g  t h a t  T2/T~ << t 
we o b t a i n  t h e  " i n c o m p l e t e "  c u b i c  e q u a t i o n  

y3 + p y  + q = O, y = (Io/b) 2, p = --~ZVo/(kb) ' 
q = _ a 2 ~ r b / ( 4 m k ) .  (4. i) 
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The real roots of Eq. (4.1) can be easily found. We confine the analysis to cases when the 
discriminant D = ~/3)3-b (q/2) ~ = 0 and D < 0. For D ffi 0 (4.1) has one real root [14], satisfy- 
ing the conditions of the problem at hand: 

~lb = (~%rb/k) 1/e, (4.2) 

while the parameters are related by the relation 

Substituting in (4.2) the value of a and taking into account (4.3), we find (4.3) 

}1/8 
I0 _ 8n _ram v~ (2k q- t) ~ %pcT~ ( 4 . 4 )  
-if-- ~%rb 4 k2Rp2 

The c o f a c t o r s  i n  ( 4 . 4 )  c o n s i s t  o f  t h e  p a r a m e t e r s  c h a r a c t e r i z i n g  t h e  a c c e l e r a t o r ,  p l a sma ,  and 
e l e c t r o d e  m a t e r i a l ,  r e s p e c t i v e l y .  For  t y p i c a l  v a l u e s  o f  t h e  a c c e l e r a t o r  p a r a m e t e r s  u s u a l l y  D 
< O. In  t h i s  c a s e  ( 4 . 1 )  a l s o  has  one r e a l  r o o t  [14 ] :  

g = 2~/~cos((p/3) (a = ] / - -  p3/27, coscp = - -  q/2a). (4.5) 

It is easy to verify that for a wide range of system parameters (in particular, for 
parameters used to construct Fig. 3) - q/2a << i. Expanding cos ~ in a series and substitut- 
ing the value of ~ in (4.5), we obtain g = (aVo/(kb))l/2+ a%rb2/(Smvo), whence 

Io/b = [(avo/kb) 1/~ q- ~.rab2/(8rnvo)] 1/2" (4.6) 

Substituting the value of a into (4.6), we find 

T = ~ j + 8=v0R~ %pcr~ (4.7) 

The values of 10/b, calculated using the formula (4.7), agree with high accuracy wlth the 
values of 10/b obtained by solving the system (1.3) and (3.7) on a computer (see Fig. 3). 

The values of 10/b , calculated from the formula (4.7), are presented in Table 3 for a 
number of metals with m = I0 -a kg,%r = 0.25-I0 -e H/m, b = 10-2m,v0 = i0 ~ m/sec,.k = '5, Rp = 
= 10-a.lt follows from the table that the critical current density cannot be significantly 
improved by replacing copper electrodes by electrodes made of the materials studied. 

The foregoing analysis shows that the plasma piston makes the main contribution to the 
increase in the temperature of the electrodes in a rail accelerator accelerating solid bodies 
with a plasma piston over a wide range of parameters; this significantly affects 10/b. The 
estimates obtained for the critical current density are significantly lower than the es- 
timated values of 10/b obtained in [7]. Since the accelerating force in a rail accelerator 
is proportional to (10/b) z, small values of the critical current density in the accelerator 
with the plasma piston make it necessary to employ incredibly long rail accelerators; this 
casts doubt on the desirability of using a plasma piston to accelerate solid bodies. 

We shall evaluate the required length of an accelerator with copper electrodes for 
obtaining a particle velocity of v ffi 104 m/set for m = 10 -3 kg, v 0 = 103 m/set, b = I0 -~ m, 
%r = 2-5"10 -7 H/m, and lo/b = 107A/m (see Fig. 3 and Table 3). Substituting the 
expression (1.3) into (1.2), replacing t o by t, and ~ by the length of the accelerator X, we 
have X= [(v2--v~)m/(krbe)] b~/I~, . whence it follows that for the indicated parameters X = 40 m 
For v ffi 15"103 m/set and the same starting parameters x = 90 m; for v = 5"103 m/set, X = i0 
m. These estimates show that if the current density does not exceed the critical value the 
length of the accelerator becomes unacceptable from the standpoint of practical realization. 
To shorten the rail accelerator the current flowing in the circuit must be reduced. Then, 
however, the current density per unit channel width exceeds the critical current density, the 
temperature of the electrodes will exceedthe melting temperature (possibly also the boiling 
temperature), erosion of the electrodes will start, and the picture of the physical processes 
occurring in the accelerator will change significantly. 
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